Folgen Sie uns auf Twitter  »  TRV bei Facebook  »  Besuche unseren YouTube-Channel  »  Kontakt  »  Werbung  »  Datenschutz  »  Impressum  »  Unser Adventskalender 2019 Adventskalender-2019  »  
Start Reviews/Artikel Forum News Partner
Passwort vergessen?
Artikel » Reviews » Enermax Revolution SFX 650W - Der Kraftzwerg im Test
  Seite: 1 2 3 4 5 6 7 8  

  Enermax Revolution SFX 650W - Der Kraftzwerg im Test
Enermax Revolution SFX 650W - Der Kraftzwerg im Test
25.04.2017 von M.Plattner





Inhalts-Navigation:


Technik im Detail

Ein Hinweis vorweg:
Nicht nachmachen! Ihr begebt euch in Lebensgefahr, wenn ihr ein Netzteil aufschraubt!

Vorweg einige Abkürzungen, die wir bei der Analyse des Netzteils verwenden werden:
  • PCB = Printed circuit board, zu Deutsch Leiterplatte. Ein Träger für elektronische Bauteile.
  • IC = Integrated Circuit, Integrierter Schaltkreis. Viele elektronische Bauteile, zu einer Baugruppe zusammengefasst, in einem Bauteil.
  • PFC = Power Factor Correction, Blindfaktorkorrektur. Ein etwas komplexeres Thema, zu dem wir gerne auf den Wikipedia Artikel verweisen würden.


Ein paar weitere Informationen für die nicht ganz so Elektronikbegeisterten: Eine Drossel ist eine Spule aus isoliertem Draht, der um einen Kern gewickelt wurde. Primärseitig finden sich meist Drosseln mit zwei getrennten Spulen auf einem Kern, sodass beide "Pole" des Wechselstroms über eine Drossel fließen. X-Kondensatoren sind zwischen den beiden "Polen" des Wechselstroms eingelötete Kondensatoren und Y-Kondensatoren zwischen jeweils einem Pol und dem Schutzleiter. Aus diesen drei Bauelementen kann man Filterglieder aufbauen. Je nach ihrer Komplexität können sie, unterschiedlich gut, auftretende Störungen aus dem Stromnetz filtern.


Bild vergrößern Bild vergrößern Bild vergrößern


Wie üblich beginnen wir beim Lüfter. Hier hat Enermax zu einem Modell von Yate Loon gegriffen, welches mit 80 mm Durchmesser und 15 mm Höhe sehr platzsparend ist – mehr Raum wäre sowieso nicht vorhanden gewesen. Beim Hersteller gibt es auch ein Datenblatt zu diesem Modell – es handelt sich um einen Lüfter mit Gleitlager und bis zu 3000 U/Min Drehzahl, welcher bei maximaler Spannung 29 CFM Luft schaufelt und dabei 32 dB laut ist. Laut Aufschrift benötigt er dabei 0,07 Ampere. Ein Kugellagerlüfter ist zwar aus Langlebigkeitsgründen zu bevorzugen, ein vergleichbares Modell mit Kugellager wäre aber nochmal etwas lauter gewesen. Leiser Betrieb bei Last ist angesichts der Größe und Drehzahl des Lüfters aber ohnehin nicht zu erwarten. In diesem Formfaktor ist das jedoch auch nur schwerlich anders zu lösen.

Der Netzfilter liegt auf einer separaten, kleinen Platine zusammen mit dem Kaltgeräteanschluss. Hier finden wir zwei X Kondensatoren, vier Y Kondensatoren, zwei Drosseln, eine Schmelzsicherung und einen Varistor zum Schutz gegen Überspannung. Wir vermissen nichts, trotz der kleinen Bauweise ist der Eingangsfilter vollständig.

Die Hauptplatine ist extrem kompakt, wirkt aber dennoch aufgeräumt. Die Kühlkörper der PFC und den Primär-Schalttransistoren sind rund um den Primärkondensator herum angeordnet, was diesen ziemlich vom Luftstrom abschirmt. Es ist ein hochwertiges Modell, das im Normalfall aber nicht stark belastet wird, daher sollte dieser Umstand keine Probleme bereiten.

PWM und PFC Controller befinden sich nebeneinander auf einer senkrecht stehenden Tochterplatine nahe dem modularen PCB. Hierbei ist ein CM6502UHHX für die PFC zuständig. Laut Datenblatt schaltet dieser immer im Nulldurchgang (wenn gerade keine Spannung an den Schalttransistoren anliegt). Wir haben es also mit einem resonanten Design zu tun – aufwändiger aber effizienter als ein herkömmliches Design. Die dazugehörige Drossel versteckt sich unter dem Kühlkörper für den PFC Transistor und den Gleichrichter.
Um die PWM kümmert sich ein CM6901. Auch hier haben wir es mit einer resonanten Typologie zu tun, um genau zu sein mit einem LLC Schaltwandler. Dies ist auch am Layout unschwer zu erkennen, denn neben dem Kühlkörper der Schalttransistoren ist eine kleine Drossel verbaut. Der Transformator, vor allem aber die Drossel sind für ein 650 Watt Gerät ziemlich klein dimensioniert, an dieser Stelle mussten wohl erneut Kompromisse wegen der Maße eingegangen und höhere Verluste in Kauf genommen werden um kleiner bauen zu können. Der CM6901 kann auch eine synchrone Gleichrichtung bereitstellen, welche auf einer weiteren senkrechten Platine verbaut wurde. Eine solche erhöht im Vergleich zu herkömmlichen Dioden stark die Effizienz. Die FETs sind ungekühlt und nicht im Luftstrom, ihre Abwärme führen sie wohl zum großen Teil über die Anschlüsse an die Platine und an den Transformator ab. Alles in allem eine sehr effiziente Plattform, wo trotz der beengten Bauweise immer auf eine hohe Effizienz geachtet wurde. Die genauen Bezeichnungen/Daten der FETs im aktiven Gleichrichter lassen sich leider nicht ablesen, ohne das komplette Netzteil in seine Einzelteile zu zerlegen.


Bild vergrößern Bild vergrößern


Der Controller für die 5 Volt Stand-By sitzt zusammen mit einem kleinen MOSFET auf einer senkrechten Platine zwischen PFC und Transformator. Um Platz zu sparen wurde hier kein großer Controller mit integriertem Schalttransistor verwendet, sondern ein kleiner SMD Controller mit externem FET. Das braucht zwar mehr Fläche (welcher auf der senkrechten Platine vorhanden ist), spart aber dringend nötige Bauhöhe. Die Bezeichnungen lassen sich wegen des engen Einbaus leider nicht ablesen.

Die DC-DC Wandler sitzen auf einem weiteren senkrechten Tochterboard und werden von einem Anpec APW7159C angesteuert. Dieser kann mit 12 Volt am Eingang und wenig externer Beschaltung zwei komplette DC-DC Wandler bereitstellen, von denen beide über eine OVP/UVP/OCP verfügen. Genau das wurde hier auch gemacht, allerdings sind die verbauten Spulen überraschend groß und als komplett geschlossene Schalenkerne ausgeführt. Solche Kerne weisen meiste geringere Verluste und bessere Abschirmung auf als offene Kerne. Warum wir genau in einem SFX Netzteil so groß dimensionierte und teure Spulen vorfinden wissen wir nicht.


Bild vergrößern Bild vergrößern


Der Primärkondensator stammt aus dem Hause Nichicon, genauer aus der GG Serie mit 390 Mikrofarad bei 400 Volt. Diese sind auf 2000 Stunden Betrieb bei 105°C und 1,4 Ampere Ripplestrom ausgelegt – Werte die das Netzteil selbst für den schlecht gekühlten Primärkondensator nie erreichen wird, weshalb die effektive Lebensdauer wohl deutlich höher ausfallen sollte. An diversen Stellen in der Elektronik und an den 5 Volt Stand-By finden sich Nippon Chemi-Con KY. Hier wurde zu den richtigen Elkos gegriffen, da diese Serie auf hohe Lebensdauer ausgelegt ist – der an der Stand-By-Schiene weist 8000 Stunden (nahe seinen Limits betrieben) auf. Die Elkos, um die 12 Volt Schiene zu puffern, lassen sich wegen der engen Bauweise nicht gut ablesen. Wir scheinen es mit einer Mischung aus Feststoffkondensatoren und Nippon Chemi-Con KZE zu tun zu haben. Letztere sind beliebt in Netzteilen und weisen ebenfalls gute Lebensdauer bei hoher Ripple-Belastbarkeit auf. Auf dem PCB der DC-DC Wandler finden sich zwei weitere Feststoffkondensatoren, vermutlich um 5 Volt und 3,3 Volt zu puffern.

Auf dem modularen PCB sind weitere Feststoffkondensatoren und ein kleiner Chemi-Con KZH verbaut.

Alles in allem hat Enermax an den Kondensatoren nicht gespart – was angesichts der sehr schlecht möglichen Kühlung auch notwendig war. Der Primärkondensator wird vom Kühlkörper der PFC und der PWM eingerahmt, die Elkos sekundärseitig stecken zwischen der Gleichrichter-Platine und dem DC-DC PCB eingezwängt. Um diesen widrigen Umständen zu trotzen wurden laut Datenblättern hochwertige und langlebige Kondensatoren verbaut, dem Marketing-Versprechen treu lediglich von japanischen Herstellern.


Bild vergrößern Bild vergrößern


Zur Lötqualität können wir wenig sagen, diese ist eigentlich durch die Bank absolut einwandfrei. Die Schrauben der Abstandshalter des modularen PCBs hätte man noch verlöten können. Mit Kleber wurde wohl bewusst stark gespart, um das letzte bisschen Freiraum für kühlenden Luftstrom zu gewinnen.

Das Design ist nicht ganz optimal für eine gute Kühlung, aber bei dem geringen Platz war das wohl auch gar nicht anders möglich. Der vorhandene Platz wurde mit guten Bauteilen bestückt und die Verarbeitung ist durch die Bank sehr gut. Das Ergebnis ist eine qualitativ hochwertige und potentiell etwas laute Elektronik, auf deren Messwerte wir wirklich gespannt sind! Dazu mehr auf den nächsten Seiten.






Inhalts-Navigation:





  Druckansicht
 

Seite: 1 2 3 4 5 6 7 8
Seitenanfang
nach oben

Copyright © 2009 - by Tech-Review.de

Diese Webseite wurde mit PHPKIT Version 1.6.1 erstellt
PHPKIT ist eine eingetragene Marke der Gersöne & Schott GbR - Copyright © 2002-2004

Anzeige